Table 1

Fichter, Lynn S., Pyle, E.J. and Whitmeyer, S.J, 2010 (in press), Strategies and Rubrics for Teaching Chaos and Complex Systems Theories as Elaborating, Self-Organizing, and Fractionating Evolutionary Systems

Universality Principles of Chaos Theory			
Model	Representation	Principle	
Logistic System - X _{next}	Time series diagrams	 Computational viewpoint Positive and negative feedback r values Deterministic ≠ predictable 	
Bifurcation Diagram	Part One: Generating the bifurcation diagram	 5. Bifurcation = change in behavior 6. Instability increases with 'r' 	
	Part Two: Self-Similarity (Fractals): Zooming in on the bifurcation cascade	7. Self similarity	
	Fractal geometry (more depth on self similarity)	 8. There is no typical or average size of events or objects. 9. Non-whole number dimensions 	
	Part Three: Feigenbaum ratios	10. All complex systems accelerate their rate of change at the same rate	
	Part Four: Attenuating bifurcation diagram	11. All changes are preceded by increasing instability	
Sensitive Dependence	X _{next} time series diagrams at 4.0000001 compared with 4.0000002	12. Minuscule changes in 'r' can result in dramatic changes in behavior	
Power Laws	Log-log graph	 Small-low energy-events are very common but do very little work. Large-high energy-events are very rare but do most of the work. 	
Strange Attractors	Phase space	14. Chaos/complex systems have behaviors that may superficially appear random, but have recognizable large scale patterns.	

Principles of Elaborating Complex Evolutionary Systems			
Typical Elaborating Evolutionary Models		15. The general evolutionary algorithm—1) differentiate 2) select 3) amplify 4)	
WordEvolv	Computer calculated algorithm	repeat—is an extremely efficient and effective method of natural selection.	
John Muir Trail	Narrative description diagrams/charts		
Tierra	Narrative description with diagrams/charts		
Principles of Self Organizing Complex Evolutionary Systems			
Boids	MatFa's Boids program (along with many other available programs)	16. Local Rules lead to Global Behavior, self organization arises spontaneously without design or purpose	
Self-Organized Criticiality	Sand pile model	17. All natural open systems dissipating sufficient energy evolve–self-organize–to critical, sensitive dependent states which leads to avalanches of change that follow a power law distribution.	
Cellular Automata	Life3000 program (along with many other available programs)		
Bak-Sneppen Ecosystem	Bak-Sneppen computer driven algorithm	 18. In a complex system everything is connected with everything else. Nothing exists in isolation from the rest, sitting in a protected niche, independent and self-sufficient. 19. In a complex system no one can be completely safe, with complete control over their fate. Everyone is an innocent victim since there is no way one can fully protect oneself in such a world. 	