Climate and
Environment



Oxygen Isotope
Fractionation and
Measuring
Ancieni
cemperatures




Phanerozoic Climate Change
N| Pg K J T | B C D |S| o | Cm

—— Short-Term Average
4

— Long-Term Average

HOT

1{"',4!

av

Glacial Periods

K J Tr D Cm

0 50 100 150 200 250 300 350 400 450 500 542
Millions of Years Ago




Oxvgen Isotope Ratio Cycles

Oxygen isotope ratio cycles are cyclical variations in
the ratio of the mass of oxygen with an atomic weight
of 18 to the mass of oxygen with an atomic weight of
16 present in some substance, such as polar ice or
calcite in ocean core samples.

The ratio is linked to water temperature of ancient
oceans, which in turn reflects ancient climates. Cycles
in the ratio mirror climate changes in geologic
history.



Oxygen Isotope Fractionation

Oxygen (chemical symbol O) has three naturally occurring
isotopes: 14O, 170, and 80, where the 16, 17 and 18 refer
to the atomic weights.

e The most abundant is 14O, with a small percentage of 180
and an even smaller percentage of 17O.

e Oxygen isotope analysis considers only the ratio of 180 to
160 present in a sample.

o 180 is heavier than '°O and it takes more energy to
vaporize water with H,'8O than to vaporize H,'¢0O.

e Therefore the first water vapor formed during evaporation
of liquid water is enriched in H,10.

e And the water left behind is enriched with H,'20O.



Oxygen Isotope Fractionation

Conversely, when water vapor condenses into liquid, H,'2O
preferentially enters the liquid, while H,°O is concentrated in
the remaining vapor.

BUT, the ratio of 1°O to 80 is dependent on the ambient
temperature.

e A relatively warm temperature produces snow or rain of a
relatively higher concentration of the heavier isotope.

e And a relatively cooler temperature produces snow or rain
of a relatively lower concentration of the heavier isotope.



Oxygen Isotope Fractionation
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http://earthobservatory.nasa.gov/Study/Paleoclimatology OxygenBalance/oxygen balance.html



Oxygen Isotope Fractionation

Therefore, variations in the ratio of 14O to 80 can be used to
measure the temperature of the environment at the time the
deposits were formed.

Deposits with oxygen isotopes show up in a variety of
abundant and widely distributed substances.
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Oxygen Isotope Fractionation

Therefore, variations in the ratio of 14O to 80O can be used to
measure the temperature of the environment at the time the
deposits were formed.

Deposits with oxygen isotopes show up in a variety of
abundant and widely distributed substances.

e Rain, and snow, and glacial ice.
e (Carbonate sea shells.




During Ice Ages . ..

. . . cooler temperatures extend toward the equator, so the
water vapor containing heavy oxygen rains out of the
atmosphere at even lower latitudes than it does under milder
conditions. The water vapor containing light oxygen moves
toward the poles, eventually condenses, and falls onto the ice
sheets where it stays.
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Between Ice Ages. ..

. . . as temperatures rise, ice sheets melt, and freshwater runs
into the ocean. Melting returns light oxygen to the water, and
reduces the salinity of the oceans worldwide.
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Negative numbers of
18O mean the
temperature is warm

Negative
means warm
Positive means
cold

Positive numbers of
18O mean the
temperature is cold.
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The benthic oxygen isotope curve reflects the global climate evolution of the last 5 million years, as it is a measure of changes in global
ice volume and deep-water temperature. The Pliocene warm period from ~5 to ~3 million years ago is believed to hold clues for assessing
future climate change. This time interval, with atmospheric CO2-concentrations close to modern ones, was significantly warmer than
today. High-latitude sea surface temperatures were up to 7°C higher, the modern Northern Hemisphere ice cap over Greenland was
absent, and the sea level was about 30 m higher than today. Hence, it represents a possible future climate scenario predicted by
numerical models. The long-term increase in oxygen isotope values from ~3—2.5 million years ago marks the development of a
permanent Northern Hemisphere ice cap with varying size. The last 3 million years are characterized by alternating glacial and interglacial

climate stages, while glacial ice sheets reached their largest size during the last 700.000 years.
http://www.awi.de/de/forschung/fachbereiche/geowissenschaften/marine_geology and paleontology/
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Camp Century and other Greenland

From 1989 to
1994, the U.S. and
European scientific
communities
supported a bold
undertaking to
acquire an extensive
paleoclimate record
for the Northern
Hemisphere.
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/v431/n7005/fig_tab/nature02805 F1.html



http://zero.eng.ucmerced.edu/rcbales/Summit/whitepaper.html



Thicker
annual
layers

Annual layers
thinned

FIGURE 10-1 Ice coring The best place on an ice sheet to

take ice cores is at the top of the ice dome because ice flows
slowly down into the ice sheet and old ice is preserved at the
bottom.

http://www.aip.org/history/climate/xCampCent.htm



http://www.emporia.edu/earthsci/student/tinsley 1/drilling.jpg



Here is a photo of ice in a
core collected by from the
North Greenland Ice Core
Project showing annual layers
of the ice from about 1800 m
depth, which means the ice is
about 20 000 years old.The
curve shows the variations in
light intensity measured by a
line scanner showing the light
intensity scattered from the
ice.
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http://oceanworld.tamu.edu/resources/oceanography-book/Images/kennedy(2006)-fig.gif



http://www.ssec.wisc.edu/icds/gallery/albums/DISC/NICL core tray set up 001.jpg



Vostoc and Other Antartic
agearch Station

http://salegos-scar.montana.edu/docs/Images.htm



Vostoc and Other Antartic
Research Stations




Lake Vostoc Antartic
Research Station




Vostoc and Other Antartic
Research Stations
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http://current.com/items/88797217 arctic meltdown_newsweek interview_with robert_corell
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Ocean Drilling Project (ODP)
The Glomar Challenger

http://oceanz.tamu.edu/ ~ wormuth/hist.html
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From Coring Site to Core Repository

Photo from New York Times article Nov 30 2004



Ocean Drilling Project (ODP)

http://oceanz.tamu.edu/ ~ wormuth/hist.html



Recovered Cores =
Cylinders of sediment and rock =
Time capsules of Earth history
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First Discoveries of Glacial Cycles
Heinrich Events

Sediment Transport and Deposition Associated

The appearance of coarser ice . aboenmaptis oy
rafted debris layers periodically
in the cores. s
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Heinrich's original observations were of six layers in ocean sediment cores
with extremely high proportions of rocks of continental origin, "lithic
fragments” (Heinrich 1988). The larger size fractions cannot be
transported by ocean currents, and are interpreted as ice rafted.

Represents a surge of melting of the ice occurring because the thick ice
pressure melts at the bottom.

http://www.uwsp.edu/geo/faculty/lemke/geol370/lecture notes/15 ice age chronology.html



Patterns in the North Atlantic Ocean Cores
Heinrich Events
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Heinrich events last about 750 years, occur during some, but not all,
of the periodic cold spells during an ice age, and take only a couple of
years to start.



Patterns in Greenland Ice Cores
Dansgaard-Oeschger Oscillations
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Appear as rapid warming episodes, typically in a matter of decades, each
followed by gradual cooling over a longer period.

The D-O events contain within them Heinrich cycles.



Patterns in Greenland Ice Cores
Dansgaard-Oeschger Oscillations
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Dansgaard-Oeschger events are rapid climate fluctuations occurring every
=~ 1470 (+ 532) years. Twenty-three such events have been identified

between 110,000 and 23,000 years BP



Patterns in Greenland Ice Cores
Bond Cycles
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Bond events are rapid coolings of North Atlantic sea water, followed by
slow rises in temperature occurring every = 1470 years throughout the
Holocene. Eight such events have been identified.



Patterns in the Ocean Cores
Bond Cycles
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Abrupt climate events are found in Greenland ice cores, and some other
locations such as the Cariaco Basin in the Caribbean Sea. Warm (interstadial)
events are numbered in the ice core (red). The data are significant because
they reveal ocean-wide climate changes occurring within a century or less,
altering the temperatures in the far North Atlantic, and the sea surface
conditions close to the equator. In both regions, conditions appear to flip back
and forth between two different states.

http://www.ncdc.noaa.gov/paleo/abrupt/data_glacial2.html
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FRACTAL TEMPERATURE PATTERNS IN TIME

What you can see depends on the scale of observation
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And, of course, there are cycles going on
at smaller times scales too.

Global Temperatures :
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Patterns within
patterns within
patterns
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But, just observing these
patterns does not explain
them

Possible
Cxplanations




Explanations for climate changes, and for
glaciations, are legion.

Part of the difficulty is that explanations for
events of one scale may not work at all for
events at a larger scale.

1. Sunspot Cycles

Near Solar Max - March 2001 Near Solar Min - January 2005

These two images of the Sun
show how the number of
sunspots varies over the
course of a sunspot cycle. The
image on the left, with many
sunspots, was taken near solar
max in March 2001. The
righthand image, in which no
spots are evident, was taken
near solar min in January

2005.

2001/03/29 09:36C



Explanations for climate changes, and for
glaciations, are legion.

Part of the difficulty is that explanations for
events of one scale may not work at all for
events at a larger scale.

200

1. Sunspot Cycles

Sunspot populations quickly
rise and more slowly fall on
an irregular cycle about every
11 years. Significant
variations of the 11 year
period are known over longer
spans of time.
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Explanations for climate changes, and for
glaciations, are legion.

Part of the difficulty is that explanations for
events of one scale may not work at all for
events at a larger scale.

1. Sunspot Cycles
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Explanations for climate changes, and for
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Fig.6 Normally, the trade winds and strong equatorial currents flow toward the west.
At the same time, an intense Peruvian current causes upwelling of

cold water along the west coast of South America.
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But, just observing these
patterns does not explain them

Milankoviich
Cycles




Milanlko

Changes in the Earth’s climate that
results from change

S ’gthe Earth’
orbital movements tar@ “
Serbian civil enginegll a l e

mathematician Milutin kovic.




Milankovitch proposed that the changes in the intensity of
solar radiation received from the Earth were effected by
three fundamental factors.

The first is called eccentricity, a
per.IOd Of abOUt ](.)O’OOO ye.al‘s In Now 200 400 600 800 mtm kyr ago
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The second is called obliquity, a \N\/\M\f\/\/\

Solar Forcing

period of about 41,000 years where 55N Summer

the Earth's axis tilt varies between Ht
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The third is called precession, a e
period of approximately 23,000

years where the Earth's axis wobbles

like a spinning top.
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Milankovitch Cycles - Eccentricity

The shape of the Earth's orbit varies from being nearly circular
to being mildly elliptical. The major component of these
variations occurs on a period of 413,000 years but a number
of other terms vary between 25,000 and 136,000 years, and
loosely combine into a 100,000-year cycle




Milankovitch Cycles - Obliquity

The angle of the Earth's axial tilt (obliquity) varies with respect
to the plane of the Earth's orbit. These slow 2.4° obliquity
variations are roughly periodic, taking approximately 41,000
years to shift between a tilt of 22.1° and 24.5° and back

22.1°

again.




Summer Winter
June 21 December 21

Winter Summer

Effect of increased tilt on polar regions. Increased tilt
brings more solar radiation to the two summer season
poles and less radiation to the two winter season
poles.




Milankovitch Cycles - Precession

Precession is the change in the direction of the Earth's axis of
rotation relative to the fixed stars, with a period of roughly
26,000 years. This gyroscopic motion is due to the tidal forces
exerted by the sun and the moon on the solid Earth, associated
with the fact that the Earth is not a perfect sphere but has an
equatorial bulge - ,_ NORTH PO

Axis now Axis C.11000y

S Precession




Milankovitch Cycles - Precession

Precession is the change in the direction of the Earth's axis of
rotation relative to the fixed stars, with a period of roughly
26,000 years. This gyroscopic motion is due to the tidal forces
exerted by the sun and the moon on the solid Earth, associated
with the fact that the Earth is not a perfect sphere but has an
equatorial bulge -

gl Spinning Top Dance
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FIGURE 7-20 Complications from overlapping cycles If
perfect sine wave cycles with periods of 100,000, 41,000, and
23,000 years are added together so that they are
superimposed on top of one another, the original cycles are
almost impossible to detect by eye in the combined signal.
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FIGURE 7-15 Long-term changes in precession The
precessional index (esin®) changes mainly at a cycle of 23,000
years. The amplitude of this cycle is modulated at the
eccentricity periods of 100,000 and 413,000 years.



FRACTAL TEMPERATURE
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