
1   Extensive explorations of cellular automata (including forms more sophisticated than we are studying) can be found
in Stephen Levy, 1992, Artificial Life: Pantheon Books, and Stephen Prata, 1993, Artificial Life Playhouse: Waite Group
Press (complete with computer disk with artificial life programs, including Life3000). [WP\brain\alife\cellauto.97]

O N E DIM EN SIO N A L (LI N EA R) CELLU LA R A U TO M A TA

Alive Dead

Possible combinations of states for 
three adjacent cells.  These 
constitute rules for the behavior of 
a cell in each generation (time 
step).

NEXT

SA M PLE RU LES FO R LI N EA R CELLU LA R A U TO M A TA

If a cell is dead and both its neighbors are dead,
the cell will be dead the next time step.

If a cell is dead and both its neighbors are alive,
the cell will be alive the next time step.

If a cell is dead and its left neighbors is dead, and 
its right neighbor is alive, the cell will be alive the 
next time step.

A ONE DIMENSIONAL (LINEAR) CA

CELLULAR AUTOMATA1

How They Are Created and Work

WWHAT HAT AARE RE CCELLULAR ELLULAR AAUTOMATAUTOMATA??
Cellular Automata (CA) are simply grids of cells, where the individual cells change states

according to a set of rules.  The CA may be one dimensional, or linear, like a string of cells in
a row (below), or two dimensional, like a checkerboard (next page).

Cells in a CA can exist in any states you assign them.  For example, each cell may have two
states: "alive" (shaded, or lit up on a computer) or "dead" (unshaded, or unlit).   Or each cell

may have five states: red,
green, yellow, blue, or white,
or any other states you wish.

Each cell is also able to
change state from one
generation (one time step, or
one iteration) to the next
generation (time step, or
iteration) following a set of
rules.  For a one dimensional
system there are 8 possible
rules of change, 2 states for
each cell, for each of three
adjacent cells (23 = 8).  Only a
few selected rules are
operating at any one time in a
CA. 

In linear CA the first
generation is the first row,
and each following genera-
tion adds another row to
show the sequence of
changing states.  Examples of

three of the eight rules (above) show the original state of the center cell (top row) and what
happens to that cell in the next generation (second row, with only the changed central cell
shown) based on the given rule.  
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CELLULAR AUTOMATA are the working
out of these fixed rules over a series of
generations. 
TTWO WO DDIMENSIONAL IMENSIONAL CCELLULAR ELLULAR AAUTOMATAUTOMATA

To the right is a two dimensional CA. Note
that there is a live cell in the center, surrounded
by 8 other cells.  Because in this case there are
a total of nine cells, each of which can assume one of two states (alive or dead) there are 29 =
512 possible rules.  These rules are usually divided into rules necessary for survival of a cell,
and rules necessary for birth of a cell.  As with linear CA, only a few rules are operating at any
one time.  Two common rules are: 

L A Survival Rule: A living cell with two or three neighboring cells survives during the next
time step, those with fewer neighbors die of loneliness, and those with more die of
overcrowding.

L A Birth Rule:  The only way for a dead cell to come alive the next time step is for it to
have exactly three living neighbors.

Of course, the rules apply to every cell every generation, so every cell must be compared
with every surrounding cell, and its state adjusted accordingly.  Unlike a linear CA, to show the
next generation of a two dimensional CA a new grid is necessary.  With all these rules, and all
these cells, calculating a CA can be a task of tedious detail.  An simple example of how to
calculate a two dimensional CA is shown on the last page.

Although there are 512 rules, some rules are very unproductive.  For example, if all rules 
produce a dead cell, then no live cells are left after the first generation and the CA becomes

a closed system with no information flowing.  Alternatively, if a cell become a live cell for all
possible states of its neighbors, then after one generation the entire system becomes a field of
all live cells stimulated to be alive every additional generation.  The system is open, with
information flowing without constraint.

Also, it is typical for rules to be combined by being less specific about which cells must be
alive or dead to cause birth or allow survival.  This significantly reduces the total number of
rules from 512 to only a few.  For example, we could specify that a cell must have only the
upper three cells alive before it becomes alive, or only the three right side cells alive, etc.  Or,
we could just say, like the rules above, any three adjacent cells of the 8 need be alive for a cell
to come alive.  In this case this one rule combines 56 rules, since there are 56 different ways
you can arrange three live neighbors around a central cell.

In addition to altering the birth/death neighbor rules in CA, there are other variables that   can
be used to alter how the CA=s develop.  For example, a mutation control can be set to

randomly bring cells to life, and at varying rates.  



Cellular Automata  -  3

Also possible is worldwrap.  Normally the edge of the CA world is the edge of the grid of
cells, and any activity coming up against that edge gets frozen in its last state.  With worldwrap
on, however, the left side Awraps around@ to the right side, and the top Awraps around@ to the
bottom, so that any activity Afalling off the left@, reappears on the right, and vice versa, and just
keeps on going.

CCLASSIFYING LASSIFYING CCELLULAR ELLULAR AAUTOMATA UTOMATA RRULESULES
Researchers have explored the ramifications of the CA and discovered some interesting

properties about their behavior.  Stephen Wolfram, studying one dimensional CA=s found he
could group rule sets into four classes based on the patterns of living, surviving, and dying cells
spreading across the grid (next page).

Chris Langton developed a quantitative scheme that assigns a numerical measure, called
lambda (88), to the behavior of CA under various rule sets.  88 is calculated from the

behavior of the CA, and varies smoothly through a range of values, as shown in the diagram
on the next page. 

88   measures the freedom with which information flows in the CA.  If the CA rules make
it very difficult for information to flow (Class One-Fixed; i.e. no change in cells), then cells
become frozen in their present state and cannot change.  If the rules allow information to flow
without constraint (Class Three-Chaotic) the result is a CA which is so fluid that it shows no
recognizable patterns.  Rules in between (Two-Periodic, and Four-Complexity) allow
information to flow, but with varying degrees of constraint.  These produce interesting patterns.

TTHE HE EEMERGENT MERGENT PPROPERTIES OF ROPERTIES OF CCELLULAR ELLULAR AAUTOMATAUTOMATA
Intuitively, it might seem that nothing very interesting would happen in these relatively

simple systems.  Because the rules are fixed, the system is "deterministic."  That is, the outcome
of each run of iterations, for each set of rules, is fully determinable from the rules.  These
systems are creatures of pure logic.  

But it turns out to be not that simple.  CA=s can produce a rich world of unexpected
behavior with waves and patterns of blinking cells sweeping across the grid.  With the right
rules, cellular automata enter into the realm of complexity where the emergent properties of
sensitive dependence and local rules/global behavior are abundant.  That is, what emerges from
the CA=s is, even though deterministic,  unpredictable, unexpected, and rich with information
and meaning.

CA=s not only exhibit the principles of chaos/complexity theory, they also fall within the
realm of the Computational Viewpoint;  that is, to know a mathematical truth you must be able
to compute it (for CA=s, a great chore before computers).  Or, the outcome of an algorithm can
only be known by calculating the algorithm (because of sensitive dependence).  Or, you have
to see it to believe it, since what emerges from these CA=s defies intuition.



CLASSIFYING CELLULAR AUTOMATA BEHAVIORS

CHRIS LANGTON’S LAMBDA  88  VALUES

STEPHEN WOLFRAM’S CLASSES
CCLASS LASS OONENE -  Fixed Fixed or StaticStatic:

L Rules that produce dull universes, such as all dead cells, or all living cells, or mixed
living and dead cells which do not change; e.g. a solid. 

L Information stops flowing producing a closed system.
L Corresponds to a fixed attractor in chaos/complexity theory.

CCLASS LASS TTWOWO -  Periodic  Periodic  or Oscillatory Oscillatory:
L Rules that produce stable, repetitive configurations; e.g. a pendulum. 
L Information flows weakly.
L Corresponds to a periodic attractor in chaos/complexity theory.

CCLASS LASS TTHREEHREE - ChaoticChaotic:
L Rules that produce chaotic (random, non repeating) patterns; e.g. molecules in a gas.
L Information flows without constraint.
L Corresponds to a strange attractor in chaos/complexity theory.

CCLASS LASS FFOUROUR - ComplexityComplexity:
L Rules that produce complex, locally organized patterns; e.g. like turbulent liquid.
L Information flows fluidly, but not unconstrained, easily producing complex patterns.
L Corresponds to a strange attractor in chaos/complexity theory.

OBSERVATIONALLY, INFORMATION FLOW CAN BE CRUDELY DETERMINED BY THE FOLLOWING BEHAVIORS
(Intermediate classifications are possible; for example 3 evolving to (±) 2, or a class between 1 and 2)

CLASS 3 - INFORMATION
FLOWS FREELY IF:

INTERMEDIATE INFORMATION FLOW
¹ ¹     CLASSES 2 & 4   ¸

¸

CLASS 1 - INFORMATION
IS RETAINED IF:

1. Cell behavior is chaotic
2. Patterns never settle down.
3. Cells expand and contract

rapidly.

¹ ¹                    ¸ ¸
1. Cell behavior is static
2. Patterns easily settle down.
3. Cells expand and contract

slowly, or are static.


