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     A pendulum moving along a greater arc traverses a greater distance and its velocity is greater, for it falls from a greater height and at a more acute

angle.  As a result of these factors, its speed is far greater. The surprising conclusion - the pendulum traverses a longer distance in a shorter time, than in a shorter
distance, and its period is shorter.
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Brief History of Swinging
Many things in this universe oscillate - alternate between two or more states; pendulums, electronic

circuits, biochemical reactions, etc.  Of these the pendulum is the most basic and universal.  Deciphered by
Galileo (1564-1642) the behavior of a pendulum has served as the quintessential limit cycle attractor, the
model for all oscillatory systems. 

Study of the pendulum began when Galileo observed the swinging of a
chandelier hanging in a cathedral.  From his studies Galileo concluded that the
swing has a constant period—that is, the period of each pendulum is independent
of the size of the arc through which it passes, a “fact” later demonstrated not
strictly correct1.  Today we know that the period of the pendulum remains constant
as long as the pendulum's angle is no greater than about 20 degrees, and even then,
it is not completely precise.  

Nonetheless, based on these observations Galileo began to use a pendulum as
a stopwatch to time his experiments, but never found a way to convert it into a
practical clock.  It was Christian Huygens of the Netherlands in 1657 who
produced the first driven pendulum clock based on Galileo’s principles.  Until the
beginning of the twentieth century, pendulum clocks were the most precise
available, and because of this the average person assumes that the pendulum
exhibits regular, precise, periodic behavior—the ticktock of a Grandfather clock.
However, they do not.

Horology is the science of timekeeping, clocks, and watches, and even today
has many amateur adherents.  The goal always has been to devise a mechanism that
is reliable and extremely accurate.  However, the closer clock makers got to the
goal the more elusive it seemed to become because there always remained some

perturbations.  Horologists refer to the small variations in a pendulum’s swing as  flicker noise, and it has
been well studied over the years in attempts to eliminate it.  For example, the materials from which
pendulums are made change size with temperature, affecting the period, while differences in air pressure and
humidity change the air resistence on the pendulum, affecting its period.  So, minimal-size-changing  metals
were concocted, and pendulums were placed in hermitically sealed chambers.  And although precision
improved, complete precision remains elusive; real world pendulums are subject to too many sensitive
dependent conditions.

Flicker noise, however, is also known as pink noise, or one-over-f noise, meaning the swing of a
pendulum is, in fact, a chaotic phenomena, which is why it is impossible to control. So, even in a clock
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pendulum which seems well behaved there is sensitive dependence, dependent on minor variations in
material, friction, temperature, air pressure, etc.

The computer experiments here are based on the equations describing a driven pendulum.  They are just
models of a possible real world pendulum, and as such can be made to behave as a true limit cycle attractor.
However, even in the math world a pendulum is not always well behaved.  Increase the driving energy,
increase the frequency of the driving force, decrease the damping force (friction) and errors begin to creep
in, leading to period doubling, and eventually chaos.  Plus, all of these are sensitive dependent on the initial
conditions.  

Pendulum behavior is thus analogous to the Xnext (logistic) system; at high ‘r’ deterministic—but sensitive
dependent, and unpredictable.  Which means that in a real world with real materials and real conditions their
behavior is likely unpredictable over an even larger range of variables.  

And, what is true of the pendulum is true of all oscillating systems governed by positive and negative
feedback—pretty much the entire universe—deterministic, sensitive dependent, and unpredictable.

The Driven Pendulum
A driven pendulum is one in which at the end of each swing the pendulum is given

a “kick”, a nudge or push, to keep it going.  If the kick exactly equals the energy of the
pendulum then it will swing in a regular pattern.  Greater kick and its swings will
increase; lesser kick and its swings will diminish.  This is the way a Grandfather clock
works, the kick being provided by a weight whose fall is controlled by the escapement.

Pendulum models are different from clock pendulums.  The weight is a point mass
(all the weight is considered to reside at one point), the rod is rigid, the pendulum
swings in a 360o arc (takes some getting used to), and the kick can come at any time in
the swing, and at any frequency.  Pendulum behavior is influenced by many factors; the
most common ones include:

1. A or ω = drive amplitude, or driving force, or torque

2. ωD  = drive frequency - how often the kick comes,
which may not be the same as swing frequency.

3. b = damping constant (friction), meaning a
pendulum will slow down over time if there is no
driving force.

In addition, these also influence pendulum behavior.
4. R = length of rod 
5. g = gravitational constant 
6. m = mass of pendulum
7. θ = angle of pendulum (0 = vertical) 

Not all combinations of these lead to chaotic
behavior; some result in repeating behavior—the ticktock of the grandfather clock, or double loop, or
quadruple loop cycles—although even this contains flicker noise.  But, if one of the parameters is slowly
increased, the behavior of the pendulum can be observed to go through period doublings, or bifurcations, and
finally enter chaos, a strange attractor.  

For our studies we concentrate on the three parameters: driving force, driving frequency, and damping.
Just these three provide many control combinations you can spend hours experimenting with.  Different
programs or Applets (a computer program that works in a web browser) provide different value ranges for
each parameter, and use different symbols for them so be careful if making comparisons from program to
program.
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Amplitude of Driving Force:  
< Low amplitude is close to the pendulum pivot, and high amplitude is closer

to the point mass. The closer to the pivot point the less energy the driving
force imparts to the pendulum.  

< Driving force alternates between clockwise motion and counter clock wise
motion.

Drive Frequency:  
< How fast the driving force switches from clockwise to counter clockwise.
< In some circumstances the drive frequency and the pendulum swing are

synchronized, but more commonly the pendulum is swinging one
direction while the driving force is moving the opposite direction, slowing the pendulum down rather
than kicking it.

Damping:
< Friction.  In a real system there are several sources of friction, including air resistence and moving contact

between mechanical parts.  In computer models the damping factor adds friction.  Of course, it is possible
to set damping to zero, in which case the system becomes frictionless.  If damping is set to zero while the
pendulum is in motion it becomes a perpetual motion machine.  

“ Our goals here are two fold:
1. To demonstrate a pendulum’s behavior undergoes bifurcations and can be chaotic.  In fact, that its

behavior has the same range of responses as the logistic equation Xnext, including point, limit cycle,
and strange attractors.  The extensibility is that any oscillating system is equally capable of this
spectrum of behavior.

2. To develop familiarity with ways of exhibiting a system’s behavior: time series, phase spaces, Poincare
sections, etc. 
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Experiment One - The Driven Pendulum

Attractors in Phase Space

‘ Go to this web site:  http://www.myphysicslab.com/pendulum2.html.  There  is an Applet
(a computer program that works in a web browser) of a driven pendulum.  

‘ On the Right: a pendulum
that swings 360o.
Driving force arrow
shows direction and
power (length of arrow).
N o t e  t h e  a r r o w
somet imes  po in t s
opposite direction
pendulum is swinging;
this slows down the
pendulum.

‘ Left: phase space of angular
velocity and position
(angle in radians).  

‘ Watch the simulation for a
while; can you match
movement of the
pendulum with the
trajectory in phase
space?  This is very
hard to do.  But, if you
trust that the calculation
are being done right,
you can just trust and compare the phase diagrams.  If you want to correlate the pendulum swing with
the phase space diagram, on the next page is an analysis of the single loop condition showing the
matching positions on the trajectory with pendulum positions and movements.

‘ Changing parameters.  All parameters can be changed.  Click on them and they turn red; type a new
value and strike Enter.

1. Run One - Comparing Phase Space Attractors
L Single Loop - click the top left single loop button and give the program a dozen or so cycles to settle in.

Sketch the phase space in the table below.
< Or, if you prefer, screen capture the image (Alt/Print Screen) and print it.  If you want to do this but

don’t know how just ask and we will show you.
< After it settles, if you click the “clear graph” button you can get rid of the settling in paths.

L Do the same for the Double Loop, Quadruple Loop, and Chaos.  Let the Chaos one run for several
dozen cycles before capturing it.
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The 360 Degree Pendulum in Phase Space

     Observing a 360 degree pendulum, and comparing its behavior with the phase space
trajectory takes a lot of practice, and can be mind numbing.  We suggest that you trust
the computer and not try to figure it out since it takes a lot of observation time and
practice.  But, if you want some insight into how to compare the two the phase space
diagram below for a limit cycle attractor shows the pendulum position and direction
of motion at various points on the phase space.  
   Note that the upper half is counterclockwise motion and the lower half clockwise
motion.  Also note that  the trajectory on the center line always means the pendulum
is in the down position, while trajectory on the far left/right means the pendulum is
in the up position.   When the pendulum is horizontal the phase space trajectory is half
way between the up and down positions.  



6The Driven Pendulum                                                                                                                     Chaos in a Basic Oscillator  -       

1. EXPERIMENTAL RECORD ONE - COMPARING PHASE SPACE ATTRACTORS

Single loop Double Loop

Quadruple Loop Chaos

Which systems settle into a perfect limit cycle attractor?  Which do not?

How long does it take for each attractor to settle into its pattern?

Which attractors show sensitive dependence?  How do you know?

How are each of these attractors related to bifurcations?
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1.00.9 1.51.1 1.2 1.3 1.4 2.01.6 1.7 1.8 1.9 2.1 2.2

1.0 1.12 1.35 1.6 1.82 2.15

1.1 1.22 1.5 1.75 2.05

EXPERIMENT TWO - THE DRIVEN PENDULUM

Bifurcations in Phase Space

Now that we have some idea how to read pendulum behavior in a Poincare section we want to go back
and systematically observe changing behavior in phase space.  The “MyPhysicsLab” applet allows us to do
that easily.

2.  Run Two - Bifurcations in Phase Space
“ Return to this web site:  http://www.myphysicslab.com/pendulum2.html. 

L Click on the “drive amplitude” box; it will turn red.  Type in a new value and strike Enter to set the
value.

“ On the number line below are eleven amplitude values.  Beginning with 1.0, type the value and wait until
the attractor settles down.  Then, in the boxes two pages over sketch and/or describe the final settled
attractor.  Clear the graph if you need to to see just the final state.
L If you want you can screen capture the final attractor states to compare them.

3. Experimental Record Three - Bifurcations in Phase Space

Compare the attractors in the left column (1.0, 1.12, 1.35, etc.)  with those in the right column (1.1,
1.22, 1.5, etc.)  Describe how they compare.



8The Driven Pendulum                                                                                                                     Chaos in a Basic Oscillator  -       

Explain the relationships you see in the changing attractors.

Now, look at the diagram on the last page.  What is the relationship between your observations in this
experiment and that diagram?

Describe the relationships between the logistic equation X-next and the behavior of a driven pendulum. 
How are they similar?  How are they different?

Got It?
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Bifurcation Diagram From:

THE NONLINEAR PENDULUM: PHSI 362 PROJECT

Jan Max Walter Krüger
University of Otago, New Zealand

http://hubble.physik.uni-konstanz.de/jkrueger/phsi362/index.html
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